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We develop two nonequilibrium simulation methods which are suitable for calculation of thermal conduc-
tivity with good accuracy. These methods are based on simple algorithms, and it will be very easy to extend
their range of application. In particular, there are no restrictions �from, e.g., the force field� to apply them to a
variety of systems. Here, they are applied to the calculation of the thermal conductivity of amorphous
polyamide-6,6 systems. We treat two models of the polymer with different degrees of freedoms constrained.
The results suggest that the methods are quite efficient, and that thermal conductivity strongly depends on the
number of degrees of freedom in the model.
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In recent decades, numerical methods for nonequilibrium
molecular dynamics �NEMD� have been proposed for study-
ing transport properties of systems, such as the thermal con-
ductivity and the shear viscosity �1–7�. The reverse nonequi-
librium molecular dynamics �RNEMD� method in particular
has the advantage that total energy and total linear momen-
tum are conserved, and it has been successfully applied to
various systems such as Lennard-Jones fluids, molecular liq-
uids and their mixtures, as well as polymer systems �2,4,5,8�.
In the RNEMD method, a heat flux through the system is
artificially generated by suitably exchanging particle veloci-
ties in different regions. The periodic system is divided
equally into slabs along one direction, with one of these slabs
defined as a “hot slab” and another as a “cold slab.” At
intervals of several hundred time steps, the center-of-mass
Cartesian velocity vectors of the “coldest” particle in the hot
slab and the “hottest” particle in the cold one of equal mass
are swapped �for details of the method, see Ref. �2��. How-
ever, it is difficult to apply the RNEMD method to force
fields with all bond distances constrained, since velocity-
exchange procedures between different atoms often violate
the constraint conditions of the SHAKE method �9�. These
problems have been discussed in detail elsewhere �4,5�.

To overcome this difficulty, numerical methods especially
suited for fully constrained models are proposed here for the
calculation of thermal conductivity, termed the dual-
thermostat method and heat-injection method. Using these
numerical algorithms, we can obtain the thermal conductiv-
ity of fully constrained polymer systems with high accuracy.
Because no assumption is made concerning the details of
force fields, these NEMD methods are widely applicable. In
this paper, we demonstrate the accuracy and efficiency of
these algorithms by examining the thermal conductivity of
amorphous polyamide-6,6 �PA66� systems �10�.

The thermal conductivity � is defined by the linear-
response relation

j = − � � T �1�

where �T is a temperature gradient and j is a heat flux vec-
tor. In the following, we describe the methods for calculating
the thermal conductivity �. The first one is the dual-
thermostat �DT� method, with a setup as shown in Fig. 1�a�.
In this method, slab H and slab C are coupled with Ber-
endsen thermostats locally, and each slab is set to remain at a
constant temperature �9�. The temperatures of the thermo-
stated slabs are set to be T0=TH for slab H and T0=TC for
slab C �TH�TC�; the system reaches a steady state after
sufficient time, and a linear temperature profile is obtained in
the intervening slabs.

In some of the previous computer simulations of the ther-
mal conductivity, the magnitude of heat flux was numerically
obtained by the fluctuation-dissipation theorem �11�. In these
methods, the statistical error of the calculated thermal con-
ductivity can become quite large. We employ a different nu-
merical method here: in slab H, the Berendsen thermostat
creates energy in the system �on average�, while the thermo-
stat in slab C removes energy from the system. We did not
perform any temperature control in the intervening unther-
mostated slabs, so the change in total energy per time step
��Etotal� becomes ��Etotal�= ��EH�+ ��EC�+ ��Eerr�, where
��Eerr� is the change due to numerical errors per MD step,
and �¯� denotes time averaging. After the system reaches a
stationary state ���Etotal�=0�, ��EH�+ ��EC� must be zero if
the integration error can be neglected. In practice, a nonzero
value of ��EH�+ ��EC� results from the integration error in
the simulation, and it shows the accuracy of the calculated
thermal conductivity.

In this method, both the energy creation rate and the en-
ergy removal rate can be calculated. In each time step, we
evaluate the energy changes �EH and �EC due to the Ber-
endsen thermostat coupled with slabs H and C, which are
given by �Ei���i

2−1�Ei
K �i=H ,C�, where �i, �Ei, and Ei

K

are the velocity scaling factor in slab i, the energy change
due to velocity scaling by the Berendsen thermostat, and the
kinetic energy in the slab i given by Ei

K=� j�imjv j
2 /2, respec-*Corresponding author.
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tively. Here, the summation is performed over atoms j con-
tained in slab i. As a result, the thermal conductivity � is
obtained from the above calculations as

� =
1

2S

�	�Ei/�t	�
�	dT�z�/dz	�

, �2�

where �¯� is the time averaging, S is the cross-sectional area
of the simulation box perpendicular to flow direction z, and
the factor 2 arises from the periodicity.

We also propose an alternative method called the heat-
injection �HI� method. The setup of this method is shown in
Fig. 1�b�. The main difference between the HI method and
DT method is the treatment of slab H �hot slab�. Using a
well-equilibrated sample, slab H is heated by adding a ran-
dom Langevin-noise term to the equation of motion for each
atom j in the slab,

mj
d2

dt2r j�t� = F j�t� + W j�t� , �3�

where W j�t�� (Wj
x�t� ,Wj

y�t� ,Wj
z�t�) is a white noise for heat

generation. Here Wj
��t� ��=x ,y ,z� are Gaussian random

numbers with zero mean and variance �. In addition, slab C
is set to remain at a constant temperature by coupling a Be-
rendsen thermostat locally. In this geometry, the heat gener-
ated by the Langevin noise �slab H� flows to the heat sink
�slab C�. After a sufficiently long period of time, the system
reaches a steady state with a finite temperature gradient
dT�z� /dz. Next, we calculate the rate of increase in total
energy �Etot�t� /�t with the Berendsen thermostat in slab C
turned off. In principle, this is equal to the amount of thermal
energy added to the system per unit of time, caused by the
Langevin noise in slab H.

From these two independent calculations, thermal con-
ductivity � is obtained as

� =
1

2S

��Etot�t�/�t�
�	dT�z�/dz	�

. �4�

Equations �2� and �4� have the same form, although the
physical origin of the numerator in Eqs. �2� and �4� differs; in
Eq. �4�, ��Etot�t� /�t� indicates the strength of the externally
injected heat, which is obtained from independent simula-
tion. It should be noted that in both methods, thermostating
is limited to the hot and the cold slab. In the intervening
slabs, which constitute the majority of the system, where
heat conduction takes place, and where the calculation of the
temperature gradient is performed, the system follows the
pure Newtonian dynamics. It would therefore appear that,
first, also other thermostats are permissible with both algo-
rithms and that, second, the use of the sometimes criticized
Berendsen thermostat is not critical here.

To check the accuracy of these two numerical methods
described above, the thermal conductivity of a monodisperse
Lennard-Jones system with reduced temperature T*=0.7 and
density �*=0.85 is calculated. The reduced thermal conduc-
tivity �* �in Lennard-Jones units� becomes �*=7.1±0.4 for
the DT method, and �*=6.6±0.7 for the HI method. These
results are in good agreement with those of a previous study
using RNEMD �6.4–6.9, depending on the conditions� �2�.

In the following, we calculate the thermal conductivity of
amorphous PA66 systems by the DT method, and demon-
strate its efficiency. We study an all-atom model of PA66
with bond constraints �referred to as the AA model�, which is
described in Ref. �10�. The intramolecular force field con-
tains harmonic bond angle bending and periodic cosine-type
torsional potentials. The nonbonded potential includes
Lennard-Jones terms, with Lorentz-Berthelot mixing rules,
and electrostatic interactions for the models with partial
atomic charges. The latter are treated using the reaction-field
method, with a dielectric constant of 5. In addition, we also
consider a fully bond-constrained united-atom model �re-
ferred to as UA model� derived from the AA model, in which
all of the CH2 and CH3 groups are treated as single atoms
and all of the intramolecular bonds are rigid. The Lennard-
Jones parameters 	 and � of UA model are given by 	
=0.48 kJ/mol and �=0.393 nm for CH2 groups, and 	
=0.73 kJ/mol and �=0.393 nm for CH3 groups, respec-
tively. The density is set to 1.11 g/cm3 for the AA model,
and 1.07 g/cm3 for the UA model. All molecular dynamics
simulations are carried out with the YASP package �6�. The
equation of motion is solved by a leap-frog algorithm, and
bond constraints, if present, are solved by the SHAKE
method �9,12�. The simulation cells are elongated in the z
direction, and periodic boundary conditions are imposed in
all directions.

The system size of the UA model is taken to be Lx, Ly
=5.49 nm, and Lz=10.97 nm, and the total number of
�united� atoms is N=17 328. We calculate the energy
changes within the two thermostated slabs �EH and �EC at
each MD step. To confirm the numerical accuracy of the DT
method, calculations are performed with 106 MD steps of
two different step lengths, �t=0.5 fs and 1.0 fs, after the
system reaches steady state. The temperatures in the thermo-
stated slabs are set to TH=310 K and TC=290 K, and the
coupling time of the local Berendsen thermostat in both slabs
is 0.1 ps to keep the average temperature within 0.3 K of the
target temperature. The resulting temperature profile is
shown in Fig. 2. The energy changes per step due to the

Berendsen thermostat

....... .......

cooling slabheating slab

Berendsen thermostat

....... .......

(a)

(b)

HT T= CT T=

Langevin noise

FIG. 1. Schematic view of the numerical methods: �a� the dual-
thermostat method and �b� the heat-injection method.
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thermostat in each slab become ��EH�=3.18
10−2 kJ/mol
and ��EC�=−3.73
10−2 kJ/mol with �t=1.0 ps, and
��EH�=1.75
10−2 kJ/mol and ��EC�=−1.76
10−2 kJ/
mol with �t=0.5 ps. Here, the difference between the energy
creation rate ��EH� and the energy removal rate −��EC�
shows the magnitude of integration errors due to the finite
time step �t. This difference becomes smaller with the time
step �t. The convergence of the DT method, with time steps
�t=1.0 fs and 0.5 fs, is shown in Fig. 3. The solid and the
dashed lines in Fig. 3 show ��EH� and −��EC�, respectively,
where the cumulative average of the energy change in the
thermostated slab ��Ei� �i=H ,C� is defined as

��Ei� =
1

t



0

t

�Ei�t��dt�, �5�

where �Ei�t�� is the energy change at time t�. The average
energy change ��Ei� due to the Berendsen thermostat
coupled to the slabs is found to converge after t�4

102 ps. Moreover, the difference between ��EH� and
−��EC� remained constant after this period of time, see Fig.
3�a�. As a result, the thermal conductivity of the UA model
was �=0.27±0.03 W m−1 K−1 for �t=1.0 fs, and �
=0.27±0.01 W m−1 K−1 for �t=0.5 fs.

We also examine the thermal conductivity of the AA
model by the DT method. The system size is Lx, Ly
=5.46 nm and Lz=10.92 nm, and the total number of atoms
is N=36 720. Calculations are performed for 106 MD steps
of length �t=0.5 fs, after the system reached the steady
state. With slab temperatures set to TH=310 K and TC
=290 K, the thermal conductivity in the AA model becomes
�=0.38±0.01 W m−1 K−1.

In addition, the thermal conductivity of the fully bond-
constrained UA model of amorphous PA66 is calculated
by the HI method �Fig. 1�b��, in order to compare the two
methods for the same polymer model. First, we calculate the
rate of increase of the total energy �Etot�t� /�t for different
magnitudes of the Langevin noise term �variance �=30.0,
15.0, and 10.0 in Eq. �3�, denoted as cases I, II, and III� with
the Berendsen thermostat in slab C turned off. The resulting
linear increase of the total energy ��Etot�t� /�t� is estimated
to be 0.14 kJ/mol/ fs, 0.042 kJ/mol/ fs, and 0.024 kJ/mol/ fs

in cases I, II, and III, respectively. Second, the three calcu-
lations are repeated with the same settings of the Langevin
noise term and with the Berendsen thermostat in the cooling
slab turned on. From the resulting temperature profiles, the
temperature gradients �dT�z� /dz� �Eq. �4�� are obtained. The
number of time steps is 106 MD and their length �t
=1.0 fs. The heat conductivity of the UA model is
0.26±0.02 W m−1 K−1, 0.25±0.03 W m−1 K−1, and 0.28
±0.03 W m−1 K−1 for cases I, II, and III, respectively. The
thermal conductivities obtained by the two methods are,
thus, consistent with each other. Moreover, the results ob-
tained with the HI method at the three different heating rates
agree within their statistical error. The findings indicate that
the thermal conductivity calculated by classical MD simula-
tion strongly depends on the number of degrees of freedom
of the system. This is discussed in detail in Ref. �8�.

In summary, we have developed two nonequilibrium
simulation methods termed the DT method and the HI
method, which are both suitable for the calculation of ther-
mal conductivities with good accuracy. They are based on
simple algorithms, and it will be very easy to extend their
range of application. In particular, there are no restrictions
�e.g., force field� on the types of systems, including models
with bond constraints. Especially, the DT method is prefer-
able because it is much easier to set the average temperature
of the system by selecting the temperatures of the two ther-
mostated slabs �TH and TC� symmetric around the desired
average temperature. It will be of great interest to incorporate
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FIG. 3. Dual-thermostat method: Cumulative average of the en-
ergy change per time in the thermostated slabs ��Ei� �i=H ,C� with
the UA model. �a� dt=1.0 fs, �b� dt=0.5 fs.
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FIG. 2. Temperature profile of the UA model obtained by the
dual-thermostat method.
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other widely used thermostats �13–15�, instead of the Ber-
endsen thermostat, with the simulation methods described in
this paper.
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